Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index

ثبت نشده
چکیده

Crop coefficients are a widely used and universally accepted method for estimating the crop evapotranspiration (ETc) component in irrigation scheduling programs. However, uncertainties of generalized basal crop coefficient (Kcb) curves can contribute to ETc estimates that are substantially different from actual ETc. Limited research with corn has shown improvements to irrigation scheduling due to better water-use estimation and more appropriate timing of irrigations when Kcb estimates derived from remotely sensed multispectral vegetation indices (VIs) were incorporated into irrigation-scheduling algorithms. The purpose of this article was to develop and evaluate a Kcb estimation model based on observations of the normalized difference vegetation index (NDVI) for a full-season cotton grown in the desert southwestern USA. The Kcb data used in developing the relationship with NDVI were derived from back-calculations of the FAO-56 dual crop coefficient procedures using field data obtained during two cotton experiments conducted during 1990 and 1991 at a site in central Arizona. The estimation model consisted of two regression relations: a linear function of Kcb versus NDVI (r =0.97, n=68) used to estimate Kcb from early vegetative growth to effective full cover, and a multiple regression of Kcb as a function of NDVI and cumulative growing-degree-days (GDD) (r=0.82, n=64) used to estimate Kcb after effective full cover was attained. The NDVI for cotton at effective full cover was 0.80; this value was used to mark the point at which the model transferred from the linear to the multiple regression function. An initial evaluation of the performance of the model was made by incorporating Kcb estimates, based on NDVI measurements and the developed regression functions, within the FAO-56 dual procedures and comparing the estimated ETc with field observations from two cotton plots collected during an experiment in central Arizona in 1998. Preliminary results indicate that the ETc based on the NDVI-Kcb model provided close estimates of actual ETc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Crop Evapotranspiration of Cotton using Remote Sensing Technique

Crop coefficient values are used to estimate crop evapotranspiration (ETc) for determining irrigation scheduling. Many important crop biophysical properties such as Percentage Vegetation Cover and Leaf Area Index can be estimated from remotely sensed Vegetation Index, in order to quantify real time vegetation growth dynamics. The objective of this study was to understand the effectiveness of ba...

متن کامل

Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index

Crop coefficient (Kc)-based estimation of crop evapotranspiration is one of the most commonly used methods for irrigation water management. However, uncertainties of the generalized dual crop coefficient (Kc) method of the Food and Agricultural Organization of the United Nations Irrigation and Drainage Paper No. 56 can contribute to crop evapotranspiration estimates that are substantially diffe...

متن کامل

An Empirical Algorithm for Estimating Agricultural and Riparian Evapotranspiration Using MODIS Enhanced Vegetation Index and Ground Measurements of ET. II. Application to the Lower Colorado River, U.S

Large quantities of water are consumed by irrigated crops and riparian vegetation in western U.S. irrigation districts. Remote sensing methods for estimating evaporative water losses by soil and vegetation (evapotranspiration, ET) over wide river stretches are needed to allocate water for agricultural and environmental needs. We used the Enhanced Vegetation Index (EVI) from MODIS sensors on the...

متن کامل

An Empirical Algorithm for Estimating Agricultural and Riparian Evapotranspiration Using MODIS Enhanced Vegetation Index and Ground Measurements of ET. I. Description of Method

We used the Enhanced Vegetation Index (EVI) from MODIS to scale evapotranspiration (ETactual) over agricultural and riparian areas along the Lower Colorado River in the southwestern US. Ground measurements of ETactual by alfalfa, saltcedar, cottonwood and arrowweed were expressed as fraction of potential (reference crop) ETo (EToF) then regressed against EVI scaled between bare soil (0) and ful...

متن کامل

Estimating Riparian and Agricultural Actual Evapotranspiration by Reference Evapotranspiration and MODIS Enhanced Vegetation Index

Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003